Low Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients

نویسندگان

  • Peter Benner
  • Akwum Onwunta
  • Martin Stoll
چکیده

We study the solution of linear systems resulting from the discreitization of unsteady diffusion equations with stochastic coefficients. In particular, we focus on those linear systems that are obtained using the so-called stochastic Galerkin finite element method (SGFEM). These linear systems are usually very large with Kronecker product structure and, thus, solving them can be both timeand computer memory-consuming. Under certain assumptions, we show that the solution of such linear systems can be approximated with a vector of low tensor rank. We then solve the linear systems using low rank preconditioned iterative solvers. Numerical experiments demonstrate that these low rank preconditioned solvers are effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of unsteady flow on airfoils with vibrating local flexible membrane

  Unsteady flow separation on the airfoils with local flexible membrane (LFM) has been investigated in transient and laminar flows by the finite volume element method. A unique feature of the present method compared with the common computational fluid dynamic softwares, especially ANSYS CFX, is the modification using the physical influence scheme in convection fluxes at cell surfaces. In contr...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Efficient stochastic Galerkin methods for random diffusion equations

We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We employ generalized polynomial chaos (gPC) expansion to express the solution in a convergent series and obtain a set of deterministic equations for the expansion coefficients by Galerkin projection. Although the resulting system of diffusion equations are coupled, we show that one can construct fast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013